Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.793
1.
Sci Rep ; 14(1): 11068, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744892

Colombia's continuous contamination of water resources and the low alternatives to produce biofuels have affected the fulfillment of the objectives of sustainable development, deteriorating the environment and affecting the economic productivity of this country. Due to this reality, projects on environmental and economic sustainability, phytoremediation, and the production of biofuels such as ethanol and hydrogen were combined. The objective of this article was to design and develop a sustainable system for wastewater treatment and the generation of biofuels based on the biomass of the aquatic plant Eichhornia crassipes. A system that simulates an artificial wetland with live E. crassipes plants was designed and developed, removing organic matter contaminants; subsequently, and continuing the sustainability project, bioreactors were designed, adapted, and started up to produce bioethanol and biohydrogen with the hydrolyzed biomass used in the phytoremediation process, generating around 12 g/L of bioethanol and around 81 ml H2/g. The proposed research strategy suggests combining two sustainable methods, bioremediation and biofuel production, to preserve the natural beauty of water systems and their surroundings.


Biodegradation, Environmental , Biofuels , Biomass , Eichhornia , Wastewater , Eichhornia/metabolism , Wastewater/chemistry , Water Purification/methods , Ethanol/metabolism , Bioreactors , Hydrogen/metabolism
2.
Microb Cell Fact ; 23(1): 125, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698392

BACKGROUND: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. RESULTS: We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. CONCLUSION: The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.


Fermentation , Hydrogen , Oxygen , Hydrogen/metabolism , Oxygen/metabolism , Carbon Monoxide/metabolism , Anaerobiosis , Biomass , Gases/metabolism
3.
Bioresour Technol ; 401: 130705, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631655

A novel 70 L composite tubular photo-bioreactor was constructed, and its photo-fermentation hydrogen production characteristics of batch and continuous modes were investigated with glucose as the substrate in an outdoor environment. In the batch fermentation stage, the hydrogen production rate peaked at 37.6 mL H2/(L·h) accompanied by a high hydrogen yield of 7 mol H2/mol glucose. The daytime light conversion efficiency is 4 %, with 37 % of light energy from the sun. An optimal hydraulic retention time of 5 d was identified during continuous photo-fermentation. Under this condition, the stability of the cell concentration is maintained and more electrons can be driven to the hydrogen generation pathway while attaining a hydrogen production rate of 20.7 ± 0.9 mL H2/(L·h). The changes of biomass, volatile fatty acids concentration and ion concentration during fermentation were analyzed. Continuous hydrogen production by composite tubular photo-bioreactor offers new ideas for the large-scale deployment of photobiological hydrogen production.


Bioreactors , Fermentation , Hydrogen , Hydrogen/metabolism , Biomass , Glucose/metabolism , Pilot Projects , Fatty Acids, Volatile/metabolism , Light , Batch Cell Culture Techniques , Photobioreactors , Hydrogen-Ion Concentration
4.
Bioresour Technol ; 401: 130733, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670287

This study investigated the mediating effect of Triethanolamine on Fe@C-Rhodobacter sphaeroides hybrid photosynthetic system to achieve efficient biohydrogen production. The biocompatible Fe@C generates excited electrons upon exposure to light, releasing ferrum for nitrogenase synthesis, and regulating the pH of the fermentation environment. Triethanolamine was introduced to optimize the electron transfer chain, thereby improving system stability, prolonging electron lifespan, and facilitating ferrum corrosion. This, in turn, stimulated the lactic acid synthetic metabolic pathway of Rhodobacter sphaeroides, resulting in increased reducing power in the biohybrid system. The ternary coupling system was analyzed through the regulation of concentration, initial pH, and light intensity. The system achieved the highest total H2 production of 5410.9 mL/L, 1.29 times higher than the control (2360.5 mL/L). This research provides a valuable strategy for constructing ferrum-carbon-based composite-cellular biohybrid systems for photo-fermentation H2 production.


Ethanolamines , Hydrogen , Light , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolism , Hydrogen/metabolism , Ethanolamines/metabolism , Ethanolamines/chemistry , Iron/chemistry , Catalysis , Hydrogen-Ion Concentration , Carbon , Fermentation , Photosynthesis
5.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38616401

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Electrons , Escherichia coli , Hydrogen , Polymers , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogen/chemistry , Polymers/chemistry , Polymers/metabolism , Indoles/chemistry , Indoles/metabolism , Nickel/chemistry , Nickel/metabolism , Electron Transport
6.
J Hazard Mater ; 470: 134195, 2024 May 15.
Article En | MEDLINE | ID: mdl-38581872

This study leveraged synthesis gas (syngas), a renewable resource attainable through the gasification of biowaste, to achieve efficient chromate removal from water. To enhance syngas transfer efficiency, a membrane biofilm reactor (MBfR) was employed. Long-term reactor operation showed a stable and high-level chromate removal efficiency > 95%, yielding harmless Cr(III) precipitates, as visualised by scanning electron microscopy and energy dispersive X-ray analysis. Corresponding to the short hydraulic retention time of 0.25 days, a high chromate removal rate of 80 µmol/L/d was attained. In addition to chromate reduction, in situ production of volatile fatty acids (VFAs) by gas fermentation was observed. Three sets of in situ batch tests and two groups of ex situ batch tests jointly unravelled the mechanisms, showing that biological chromate reduction was primarily driven by VFAs produced from in situ syngas fermentation, whereas hydrogen originally present in the syngas played a minor role. 16 S rRNA gene amplicon sequencing has confirmed the enrichment of syngas-fermenting bacteria (such as Sporomusa), who performed in situ gas fermentation leading to the synthesis of VFAs, and organics-utilising bacteria (such as Aquitalea), who utilised VFAs to drive chromate reduction. These findings, combined with batch assays, elucidate the pathways orchestrating synergistic interactions between fermentative microbial cohorts and chromate-reducing microorganisms. The findings facilitate the development of cost-effective strategies for groundwater and drinking water remediation and present an alternative application scenario for syngas.


Biofilms , Bioreactors , Chromates , Membranes, Artificial , Chromates/metabolism , Fermentation , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Fatty Acids, Volatile/metabolism , Bacteria/metabolism , Bacteria/genetics , Hydrogen/metabolism , Gases/metabolism , Biodegradation, Environmental
7.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38625060

High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.


Bacteria , Desert Climate , Hot Springs , Oxidation-Reduction , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hot Springs/microbiology , Carbon Monoxide/metabolism , Hydrogen/metabolism , Microbiota , Altitude , Soil/chemistry
8.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article En | MEDLINE | ID: mdl-38658197

The dihydrogen (H2) sector is undergoing development and will require massive storage solutions. To minimize costs, the conversion of underground geological storage sites, such as deep aquifers, used for natural gas storage into future underground hydrogen storage sites is the favored scenario. However, these sites contain microorganisms capable of consuming H2, mainly sulfate reducers and methanogens. Methanogenesis is, therefore expected but its intensity must be evaluated. Here, in a deep aquifer used for underground geological storage, 17 sites were sampled, with low sulfate concentrations ranging from 21.9 to 197.8 µM and a slow renewal of formation water. H2-selected communities mainly were composed of the families Methanobacteriaceae and Methanothermobacteriaceae and the genera Desulfovibrio, Thermodesulfovibrio, and Desulforamulus. Experiments were done under different conditions, and sulfate reduction, as well as methanogenesis, were demonstrated in the presence of a H2 or H2/CO2 (80/20) gas phase, with or without calcite/site rock. These metabolisms led to an increase in pH up to 10.2 under certain conditions (without CO2). The results suggest competition for CO2 between lithoautotrophs and carbonate mineral precipitation, which could limit microbial H2 consumption.


Groundwater , Hydrogen , Methane , Natural Gas , Methane/metabolism , Groundwater/microbiology , Hydrogen/metabolism , Sulfates/metabolism , Methanobacteriaceae/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/growth & development , Carbon Dioxide/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Hydrogen-Ion Concentration , Water Microbiology
9.
BMC Gastroenterol ; 24(1): 143, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38654193

BACKGROUND: Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS: We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS: Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS: Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.


Breath Tests , Fructans , Fructose , Irritable Bowel Syndrome , Malabsorption Syndromes , Humans , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/complications , Fructose/metabolism , Female , Male , Retrospective Studies , Malabsorption Syndromes/metabolism , Malabsorption Syndromes/etiology , Malabsorption Syndromes/complications , Fructans/metabolism , Adult , Middle Aged , Hydrogen/analysis , Hydrogen/metabolism
10.
Waste Manag ; 181: 211-219, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648723

Complex organic matter represents a suitable substrate to produce hydrogen through dark fermentation (DF) process. To increase H2 yields, pretreatment technology is often required. The main objective of the present work was to investigate thermo-acid pretreatment impact on sugar solubilization and biotic parameters of DF of sorghum or organic fraction of municipal solid waste (OFMSW). Biochemical hydrogen potential tests were carried out without inoculum using raw or thermo-acid pretreated substrates. Results showed an improvement in sugar solubilization after thermo-acid pretreatments. Pretreatments led to similar DF performances (H2 and total metabolite production) compared to raw biomasses. Nevertheless, they were responsible for bacterial shifts from Enterobacteriales towards Clostridiales and Bacillales as well as metabolic changes from acetate towards butyrate or ethanol. The metabolic changes were attributed to the biomass pretreatment impact on indigenous bacteria as no change in the metabolic profile was observed after performing thermo-acid pretreatments on irradiated OFMSW (inactivated indigenous bacteria and inoculum addition). Consequently, acid pretreatments were inefficient to improve DF performances but led to metabolic and bacterial community changes due to their impact on indigenous bacteria.


Biomass , Fermentation , Bacteria/metabolism , Solid Waste/analysis , Hydrogen/metabolism , Sorghum/metabolism , Refuse Disposal/methods
11.
Food Chem ; 448: 139185, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38574715

The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.


Food Preservation , Food Storage , Hydrogen , Magnesium , Animals , Cattle , Hydrogen/metabolism , Hydrogen/analysis , Magnesium/analysis , Magnesium/metabolism , Food Preservation/methods , Cold Temperature , Meat Products/analysis , Meat Products/microbiology , Bacteria/metabolism , Bacteria/isolation & purification , Red Meat/analysis , Red Meat/microbiology
12.
Microb Biotechnol ; 17(4): e14452, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568755

Gas fermentation of CO2 and H2 is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO to ethanol and presents an opportunity for CO2-to-ethanol processes. As we have previously characterized its CO2/H2 chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO2/H2. Seven ALE lineages were generated, all with improved specific growth rates. ALE conducted in the presence of 2% CO along with CO2/H2 generated Evolved lineage D, which showed the highest ethanol titres amongst all the ALE lineages during the fermentation of CO2/H2. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Multi-omics analyses at steady state revealed that Evolved D has widespread proteome and intracellular metabolome changes. However, the uptake and production rates and titres remain unaltered until investigating their maximum dilution rate. Yet, we provide numerous insights into CO2/H2 metabolism via these multi-omics data and link these results to mutations, suggesting novel targets for metabolic engineering in this bacterium.


Carbon Dioxide , Clostridium , Proteome , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Hydrogen/metabolism , Fermentation , Ethanol/metabolism , Metabolome
13.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575972

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Chickens , Feathers , Animals , Anaerobiosis , Chickens/metabolism , Hydrogen/metabolism , Keratins/metabolism , Methane/metabolism , Biofuels , Bioreactors
14.
Water Res ; 256: 121599, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38615602

The global energy crisis has intensified the search for sustainable and clean alternatives, with biohydrogen emerging as a promising solution to address environmental challenges. Leveraging photo fermentation (PF) process, purple phototrophic bacteria (PPB) can harness reducing power derived from organic substrates to facilitate hydrogen production. However, existing studies report much lower H2 yields than theoretical value when using acetate as carbon source and ammonia as nitrogen source, primarily attributed to the widely employed pulse-feeding mode which suffers from ammonia inhibition effect on nitrogenase. To address this issue, a continuous feeding mode was applied to avoid ammonia accumulation in this study. On the other hand, other pathways like carbon fixation and polyhydroxyalkanoate (PHA) formation could compete reducing power with H2 production. However, the reducing power allocation under continuous feeding mode is not yet clear. In this study, the reducing power allocation and hydrogen production performance were evaluated under various ammonia loading, using acetate as carbon source and infrared LED at around 50 W·m-2 as light source. The results show that (a) The absence of ammonia resulted in the best performance for hydrogen production, with 44 % of the reducing power distributed to H2 and the highest H2 volumetric productivity, while the allocation of reducing power to hydrogen production stopped when ammonia loading was above 7.6 mg NH4-N·L-1·d-1; (b) when PPB required to eliminate reducing power under ammonia limited conditions, PHA production was the preferred pathway followed by the hydrogen production pathway, but once PHA accumulation reached saturation, hydrogen generation pathway dominated; (c) under ammonia limited conditions, the TCA cycle was more activated rendering higher NADH (i.e. reducing power) production compared with that under ammonia sufficient conditions which was verified by metagenomics analysis, and all the hydrogen production, PHA accumulation and carbon fixation pathways were highly active to dissipate reducing power. This work provides the insight of reducing power distribution and PPB biohydrogen production variated by ammonia loading under continuous feeding mode.


Ammonia , Hydrogen , Ammonia/metabolism , Hydrogen/metabolism , Fermentation
15.
Water Res ; 256: 121616, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657305

Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment, enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials, the transition to pilot-scale applications remains limited, leaving the actual performance of these scaled-up cathodes largely unknown. In this study, nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days, with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration, yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m-2 d-1 and 0.21 ± 0.01 m3 m-3 d-1). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand, the higher price of Ni-foam compared to stainless-steel should also be considered, which may constrain its use in real applications. By carefully analysing the energy balance of the system, this study demonstrates that MECs have the potential to be net energy producers, in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements, they also resulted in enhanced hydrogen production. For our system, a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally, the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria, predominantly Geobacter and Bacteroides, which appeared to be well-suited to transform complex organic matter into hydrogen.


Electrodes , Electrolysis , Hydrogen , Nickel , Wastewater , Wastewater/chemistry , Hydrogen/metabolism , Nickel/chemistry , Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Pilot Projects , Industrial Waste
16.
Nature ; 629(8011): 363-369, 2024 May.
Article En | MEDLINE | ID: mdl-38547926

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.


Amides , Carbon , Copper , Hydrogen , Oxidation-Reduction , Catalysis , Copper/chemistry , Copper/metabolism , Hydrogen/chemistry , Hydrogen/metabolism , Amides/chemistry , Amides/metabolism , Hydrogenation , Carbon/chemistry , Carbon/metabolism , Methanol/chemistry , Methanol/metabolism , Oxidants/chemistry , Oxidants/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Lactones/chemistry , Lactones/metabolism , Biological Products/chemistry , Biological Products/metabolism
17.
Enzyme Microb Technol ; 177: 110438, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518554

Klebsiella pneumoniae can use glucose or glycerol as carbon sources to produce 1,3-propanediol or 2,3-butanediol, respectively. In the metabolism of Klebsiella pneumoniae, hydrogenase-3 is responsible for H2 production from formic acid, but it is not directly related to the synthesis pathways for 1,3-propanediol and 2,3-butanediol. In the first part of this research, hycEFG, which encodes subunits of the enzyme hydrogenase-3, was knocked out, so K. pneumoniae ΔhycEFG lost the ability to produce H2 during cultivation using glycerol as a carbon source. As a consequence, the concentration of 1,3-propanediol increased and the substrate (glycerol) conversion ratio reached 0.587 mol/mol. Then, K. pneumoniae ΔldhAΔhycEFG was constructed to erase lactic acid synthesis which led to the further increase of 1,3-propanediol concentration. A substrate (glycerol) conversion ratio of 0.628 mol/mol in batch conditions was achieved, which was higher compared to the wild type strain (0.545 mol/mol). Furthermore, since adhE encodes an alcohol dehydrogenase that catalyzes ethanol production from acetaldehyde, K. pneumoniae ΔldhAΔadhEΔhycEFG was constructed to prevent ethanol production. Contrary to expectations, this did not lead to a further increase, but to a decrease in 1,3-propanediol production. In the second part of this research, glucose was used as the carbon source to produce 2,3-butanediol. Knocking out hycEFG had distinct positive effect on 2,3-butanediol production. Especially in K. pneumoniae ΔldhAΔadhEΔhycEFG, a substrate (glucose) conversion ratio of 0.730 mol/mol was reached, which is higher compared to wild type strain (0.504 mol/mol). This work suggests that the inactivation of hydrogenase-3 may have a global effect on the metabolic regulation of K. pneumoniae, leading to the improvement of the production of two industrially important bulk chemicals, 1,3-propanediol and 2,3-butanediol.


Bacterial Proteins , Butylene Glycols , Fermentation , Glycerol , Hydrogenase , Klebsiella pneumoniae , Propylene Glycols , Butylene Glycols/metabolism , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Propylene Glycols/metabolism , Glycerol/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hydrogenase/metabolism , Hydrogenase/genetics , Glucose/metabolism , Hydrogen/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis
18.
Appl Environ Microbiol ; 90(4): e0206523, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38527003

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.


Bacteria , Carbon , Carbon/metabolism , Carbon Isotopes/metabolism , Ecosystem , Water/analysis , Glutamic Acid/metabolism , Fatty Acids/metabolism , Soil , Hydrogen/metabolism , Glucose/metabolism
19.
Proc Natl Acad Sci U S A ; 121(13): e2318969121, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38513105

Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.


Ferredoxins , Iron , Ferredoxins/metabolism , Iron/metabolism , Hydrogen/metabolism , Electrons , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Oxidation-Reduction , Flavins/metabolism
20.
Biophys Chem ; 308: 107217, 2024 May.
Article En | MEDLINE | ID: mdl-38490110

Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]­hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]­hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.


Hydrogenase , Iron-Sulfur Proteins , Metalloproteins , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Protons , Catalysis , Hydrogen/chemistry , Hydrogen/metabolism
...